二叉树的所有路径:不止递归,还有回溯

以为只用了递归,还有回溯其实还用了回溯

二叉树的叉树所有路径

题目地址:https://leetcode-cn.com/problems/binary-tree-paths/

给定一个二叉树,返回所有从根节点到叶子节点的有路路径。

说明: 叶子节点是止递指没有子节点的节点。

示例:

思路

这道题目要求从根节点到叶子的还有回溯路径,所以需要前序遍历,叉树这样才方便让父节点指向孩子节点,有路找到对应的止递路径。

在这道题目中将第一次涉及到回溯,还有回溯因为我们要把路径记录下来,叉树需要回溯来回退一一个路径在进入另一个路径。有路

前序遍历以及回溯的止递过程如图:

我们先使用递归的方式,来做前序遍历。还有回溯要知道递归和回溯就是叉树一家的,本题也需要回溯。有路

递归

1.递归函数函数参数以及返回值

要传入根节点,记录每一条路径的path,和存放结果集的result,这里递归不需要返回值,代码如下:

void traversal(TreeNode* cur, vector<int>& path, vector<string>& result) 

2.确定递归终止条件

再写递归的时候都习惯了这么写:

if (cur == NULL) {      终止处理逻辑 } 

但是本题的云南idc服务商终止条件这样写会很麻烦,因为本题要找到叶子节点,就开始结束的处理逻辑了(把路径放进result里)。

那么什么时候算是找到了叶子节点? 是当 cur不为空,其左右孩子都为空的时候,就找到叶子节点。

所以本题的终止条件是:

if (cur->left == NULL && cur->right == NULL) {      终止处理逻辑 } 

为什么没有判断cur是否为空呢,因为下面的逻辑可以控制空节点不入循环。

再来看一下终止处理的逻辑。

这里使用vector结构path来记录路径,所以要把vector结构的path转为string格式,在把这个string 放进 result里。

那么为什么使用了vector结构来记录路径呢? 因为在下面处理单层递归逻辑的时候,要做回溯,使用vector方便来做回溯。

可能有的同学问了,我看有些人的代码也没有回溯啊。

其实是有回溯的,云服务器只不过隐藏在函数调用时的参数赋值里,下文我还会提到。

这里我们先使用vector结构的path容器来记录路径,那么终止处理逻辑如下:

if (cur->left == NULL && cur->right == NULL) {  // 遇到叶子节点     string sPath;     for (int i = 0; i < path.size() - 1; i++) {  // 将path里记录的路径转为string格式         sPath += to_string(path[i]);         sPath += "->";     }     sPath += to_string(path[path.size() - 1]); // 记录最后一个节点(叶子节点)     result.push_back(sPath); // 收集一个路径     return; } 

3.确定单层递归逻辑

因为是前序遍历,需要先处理中间节点,中间节点就是我们要记录路径上的节点,先放进path中。

path.push_back(cur->val); 

然后是递归和回溯的过程,上面说过没有判断cur是否为空,那么在这里递归的时候,如果为空就不进行下一层递归了。

所以递归前要加上判断语句,下面要递归的节点是否为空,如下

if (cur->left) {      traversal(cur->left, path, result); } if (cur->right) {      traversal(cur->right, path, result); } 

此时还没完,递归完,要做回溯啊,因为path 不能一直加入节点,它还要删节点,然后才能加入新的节点。

那么回溯要怎么回溯呢,亿华云一些同学会这么写,如下:

if (cur->left) {      traversal(cur->left, path, result); } if (cur->right) {      traversal(cur->right, path, result); } path.pop_back(); 

这个回溯就要很大的问题,我们知道,回溯和递归是一一对应的,有一个递归,就要有一个回溯,这么写的话相当于把递归和回溯拆开了, 一个在花括号里,一个在花括号外。

所以回溯要和递归永远在一起,世界上最遥远的距离是你在花括号里,而我在花括号外!

那么代码应该这么写:

if (cur->left) {      traversal(cur->left, path, result);     path.pop_back(); // 回溯 } if (cur->right) {      traversal(cur->right, path, result);     path.pop_back(); // 回溯 } 

那么本题整体代码如下:

class Solution {  private:     void traversal(TreeNode* cur, vector<int>& path, vector<string>& result) {          path.push_back(cur->val);         // 这才到了叶子节点         if (cur->left == NULL && cur->right == NULL) {              string sPath;             for (int i = 0; i < path.size() - 1; i++) {                  sPath += to_string(path[i]);                 sPath += "->";             }             sPath += to_string(path[path.size() - 1]);             result.push_back(sPath);             return;         }         if (cur->left) {              traversal(cur->left, path, result);             path.pop_back(); // 回溯         }         if (cur->right) {              traversal(cur->right, path, result);             path.pop_back(); // 回溯         }     } public:     vector<string> binaryTreePaths(TreeNode* root) {          vector<string> result;         vector<int> path;         if (root == NULL) return result;         traversal(root, path, result);         return result;     } }; 

如上的C++代码充分体现了回溯。

那么如上代码可以精简成如下代码:

class Solution {  private:     void traversal(TreeNode* cur, string path, vector<string>& result) {          path += to_string(cur->val); // 中         if (cur->left == NULL && cur->right == NULL) {              result.push_back(path);             return;         }         if (cur->left) traversal(cur->left, path + "->", result); // 左         if (cur->right) traversal(cur->right, path + "->", result); // 右     } public:     vector<string> binaryTreePaths(TreeNode* root) {          vector<string> result;         string path;         if (root == NULL) return result;         traversal(root, path, result);         return result;     } }; 

如上代码精简了不少,也隐藏了不少东西。

注意在函数定义的时候void traversal(TreeNode* cur, string path, vector& result) ,定义的是string path,每次都是复制赋值,不用使用引用,否则就无法做到回溯的效果。

那么在如上代码中,貌似没有看到回溯的逻辑,其实不然,回溯就隐藏在traversal(cur->left, path + "->", result);中的 path + "->"。 每次函数调用完,path依然是没有加上"->" 的,这就是回溯了。

为了把这份精简代码的回溯过程展现出来,大家可以试一试把:

if (cur->left) traversal(cur->left, path + "->", result); // 左  回溯就隐藏在这里 

改成如下代码:

path += "->"; traversal(cur->left, path, result); // 左 

即:

if (cur->left) {      path += "->";     traversal(cur->left, path, result); // 左 } if (cur->right) {      path += "->";     traversal(cur->right, path, result); // 右 } 

此时就没有回溯了,这个代码就是通过不了的了。

如果想把回溯加上,就要 在上面代码的基础上,加上回溯,就可以AC了。

if (cur->left) {      path += "->";     traversal(cur->left, path, result); // 左     path.pop_back(); // 回溯     path.pop_back(); } if (cur->right) {      path += "->";     traversal(cur->right, path, result); // 右     path.pop_back(); // 回溯     path.pop_back(); } 

大家应该可以感受出来,如果把 path + "->"作为函数参数就是可以的,因为并有没有改变path的数值,执行完递归函数之后,path依然是之前的数值(相当于回溯了)

综合以上,第二种递归的代码虽然精简但把很多重要的点隐藏在了代码细节里,第一种递归写法虽然代码多一些,但是把每一个逻辑处理都完整的展现了出来了。

迭代法

至于非递归的方式,我们可以依然可以使用前序遍历的迭代方式来模拟遍历路径的过程,对该迭代方式不了解的同学,可以看文章二叉树:听说递归能做的,栈也能做!和二叉树:前中后序迭代方式统一写法。

这里除了模拟递归需要一个栈,同时还需要一个栈来存放对应的遍历路径。

C++代码如下:

class Solution {  public:     vector<string> binaryTreePaths(TreeNode* root) {          stack<TreeNode*> treeSt;// 保存树的遍历节点         stack<string> pathSt;   // 保存遍历路径的节点         vector<string> result;  // 保存最终路径集合         if (root == NULL) return result;         treeSt.push(root);         pathSt.push(to_string(root->val));         while (!treeSt.empty()) {              TreeNode* node = treeSt.top(); treeSt.pop(); // 取出节点 中             string path = pathSt.top();pathSt.pop();    // 取出该节点对应的路径             if (node->left == NULL && node->right == NULL) {  // 遇到叶子节点                 result.push_back(path);             }             if (node->right) {  // 右                 treeSt.push(node->right);                 pathSt.push(path + "->" + to_string(node->right->val));             }             if (node->left) {  // 左                 treeSt.push(node->left);                 pathSt.push(path + "->" + to_string(node->left->val));             }         }         return result;     } }; 

当然,使用java的同学,可以直接定义一个成员变量为object的栈Stack stack = new Stack<>();,这样就不用定义两个栈了,都放到一个栈里就可以了。

总结

本文我们开始初步涉及到了回溯,很多同学过了这道题目,可能都不知道自己其实使用了回溯,回溯和递归都是相伴相生的。

我在第一版递归代码中,把递归与回溯的细节都充分的展现了出来,大家可以自己感受一下。

第二版递归代码对于初学者其实非常不友好,代码看上去简单,但是隐藏细节于无形。

最后我依然给出了迭代法。

对于本地充分了解递归与回溯的过程之后,有精力的同学可以在去实现迭代法。

其他语言版本

Java:

//解法一 class Solution {      /**      * 递归法      */     public List<String> binaryTreePaths(TreeNode root) {          List<String> res = new ArrayList<>();         if (root == null) {              return res;         }         List<Integer> paths = new ArrayList<>();         traversal(root, paths, res);         return res;     }     private void traversal(TreeNode root, List<Integer> paths, List<String> res) {          paths.add(root.val);         // 叶子结点         if (root.left == null && root.right == null) {              // 输出             StringBuilder sb = new StringBuilder();             for (int i = 0; i < paths.size() - 1; i++) {                  sb.append(paths.get(i)).append("->");             }             sb.append(paths.get(paths.size() - 1));             res.add(sb.toString());             return;         }         if (root.left != null) {              traversal(root.left, paths, res);             paths.remove(paths.size() - 1);// 回溯         }         if (root.right != null) {              traversal(root.right, paths, res);             paths.remove(paths.size() - 1);// 回溯         }     } } 

Python:

class Solution:     def binaryTreePaths(self, root: TreeNode) -> List[str]:         path=[]         res=[]         def backtrace(root, path):             if not root:return              path.append(root.val)             if (not root.left)and (not root.right):                res.append(path[:])             ways=[]             if root.left:ways.append(root.left)             if root.right:ways.append(root.right)             for way in ways:                 backtrace(way,path)                 path.pop()         backtrace(root,path)         return ["->".join(list(map(str,i))) for i in res] 

Go:

func binaryTreePaths(root *TreeNode) []string {      res := make([]string, 0)     var travel func(node *TreeNode, s string)     travel = func(node *TreeNode, s string) {          if node.Left == nil && node.Right == nil {              v := s + strconv.Itoa(node.Val)             res = append(res, v)             return         }         s = s + strconv.Itoa(node.Val) + "->"         if node.Left != nil {              travel(node.Left, s)         }         if node.Right != nil {              travel(node.Right, s)         }     }     travel(root, "")     return res } 
IT科技
上一篇:为啥修改dns服务器?dns服务器与域名有何联系?
下一篇: