Springboot整合Kafka Stream实时统计数据
环境:springboot2.3.12.RELEASE + kafka_2.13-2.7.0 + zookeeper-3.6.2
Kafka Stream介绍
Kafka在0.10版本推出了Stream API,整合提供了对存储在Kafka内的实时统数据进行流式处理和分析的能力。
流式计算一般被用来和批量计算做比较。计数据批量计算往往有一个固定的整合数据集作为输入并计算结果。而流式计算的实时统输入往往是“无界”的(Unbounded Data),持续输入的计数据,即永远拿不到全量数据去做计算;同时,整合计算结果也是实时统持续输出的,只能拿到某一个时刻的计数据结果,而不是整合最终的结果。
Kafka Streams是实时统一个客户端类库,用于处理和分析存储在Kafka中的计数据数据。它建立在流式处理的整合一些重要的概念之上:如何区分事件时间和处理时间、Windowing的实时统支持、简单高效的计数据管理和实时查询应用程序状态。
Kafka Streams的云南idc服务商门槛非常低:和编写一个普通的Kafka消息处理程序没有太大的差异,可以通过多进程部署来完成扩容、负载均衡、高可用(Kafka Consumer的并行模型)。
Kafka Streams的一些特点:
被设计成一个简单的、轻量级的客户端类库,能够被集成到任何Java应用中 除了Kafka之外没有任何额外的依赖,利用Kafka的分区模型支持水平扩容和保证顺序性 通过可容错的状态存储实现高效的状态操作(windowed joins and aggregations) 支持exactly-once语义 支持纪录级的处理,实现毫秒级的延迟 提供High-Level的Stream DSL和Low-Level的Processor APIStream Processing Topology流处理拓扑
流是Kafka Streams提供的最重要的抽象:它表示一个无限的、不断更新的数据集。流是不可变数据记录的有序、可重放和容错序列,源码下载其中数据记录定义为键值对。 Stream Processing Application是使用了Kafka Streams库的应用程序。它通过processor topologies定义计算逻辑,其中每个processor topology都是多个stream processor(节点)通过stream组成的图。 A stream processor 是处理器拓扑中的节点;它表示一个处理步骤,通过每次从拓扑中的上游处理器接收一个输入记录,将其操作应用于该记录,来转换流中的数据,并且随后可以向其下游处理器生成一个或多个输出记录。有两种特殊的processor:
Source Processor 源处理器是一种特殊类型的流处理器,它没有任何上游处理器。它通过使用来自一个或多个kafka topic的记录并将其转发到其下游处理器,从而从一个或多个kafka topic生成其拓扑的输入流。
Sink Processor 接收器处理器是一种特殊类型的流处理器,没有下游处理器。它将从其上游处理器接收到的任何记录发送到指定的kafka topic。亿华云

相关的核心概念查看如下链接

下面演示Kafka Stream 在Springboot中的应用
依赖
<dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>org.springframework.kafka</groupId> <artifactId>spring-kafka</artifactId> </dependency> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka-streams</artifactId> </dependency>配置
server: port: 9090 spring: application: name: kafka-demo kafka: streams: application-id: ${ spring.application.name} properties: spring.json.trusted.packages: * bootstrap-servers: - localhost:9092 - localhost:9093 - localhost:9094 producer: acks: 1 retries: 10 key-serializer: org.apache.kafka.common.serialization.StringSerializer value-serializer: org.springframework.kafka.support.serializer.JsonSerializer #org.apache.kafka.common.serialization.StringSerializer properties: spring.json.trusted.packages: * consumer: key-deserializer: org.apache.kafka.common.serialization.StringDeserializer value-deserializer: org.springframework.kafka.support.serializer.JsonDeserializer #org.apache.kafka.common.serialization.StringDeserializer enable-auto-commit: false group-id: ConsumerTest auto-offset-reset: latest properties: session.timeout.ms: 12000 heartbeat.interval.ms: 3000 max.poll.records: 100 spring.json.trusted.packages: * listener: ack-mode: manual-immediate type: batch concurrency: 8 properties: max.poll.interval.ms: 300000消息发送
@Service public class MessageSend { @Resource private KafkaTemplate<String, Message> kafkaTemplate ; public void sendMessage2(Message message) { kafkaTemplate.send(new ProducerRecord<String, Message>("test", message)).addCallback(result -> { System.out.println("执行成功..." + Thread.currentThread().getName()) ; }, ex -> { System.out.println("执行失败") ; ex.printStackTrace() ; }) ; } }消息监听
@KafkaListener(topics = { "test"}) public void listener2(List<ConsumerRecord<String, Message>> records, Acknowledgment ack) { for (ConsumerRecord<String, Message> record : records) { System.out.println(this.getClass().hashCode() + ", Thread" + Thread.currentThread().getName() + ", key: " + record.key() + ", 接收到消息:" + record.value() + ", patition: " + record.partition() + ", offset: " + record.offset()) ; } try { TimeUnit.SECONDS.sleep(0) ; } catch (InterruptedException e) { e.printStackTrace(); } ack.acknowledge() ; } @KafkaListener(topics = { "demo"}) public void listenerDemo(List<ConsumerRecord<String, Message>> records, Acknowledgment ack) { for (ConsumerRecord<String, Message> record : records) { System.out.println("Demo Topic: " + this.getClass().hashCode() + ", Thread" + Thread.currentThread().getName() + ", key: " + record.key() + ", 接收到消息:" + record.value() + ", patition: " + record.partition() + ", offset: " + record.offset()) ; } ack.acknowledge() ; }Kafka Stream处理
消息转换并转发其它Topic
@Bean public KStream<Object, Object> kStream(StreamsBuilder streamsBuilder) { KStream<Object, Object> stream = streamsBuilder.stream("test"); stream.map((key, value) -> { System.out.println("原始消息内容:" + new String((byte[]) value, Charset.forName("UTF-8"))) ; return new KeyValue<>(key, "{ \"title\": \"123123\", \"message\": \"重新定义内容\"}".getBytes(Charset.forName("UTF-8"))) ; }).to("demo") ; return stream; }执行结果:

Stream对象处理
@Bean public KStream<String, Message> kStream4(StreamsBuilder streamsBuilder) { JsonSerde<Message> jsonSerde = new JsonSerde<>() ; JsonDeserializer<Message> descri = (JsonDeserializer<Message>) jsonSerde.deserializer() ; descri.addTrustedPackages("*") ; KStream<String, Message> stream = streamsBuilder.stream("test", Consumed.with(Serdes.String(), jsonSerde)); stream.map((key, value) -> { value.setTitle("XXXXXXX") ; return new KeyValue<>(key, value) ; }).to("demo", Produced.with(Serdes.String(), jsonSerde)) ; return stream; }执行结果:

分组处理
@Bean public KStream<String, Message> kStream5(StreamsBuilder streamsBuilder) { JsonSerde<Message> jsonSerde = new JsonSerde<>() ; JsonDeserializer<Message> descri = (JsonDeserializer<Message>) jsonSerde.deserializer() ; descri.addTrustedPackages("*") ; KStream<String, Message> stream = streamsBuilder.stream("test", Consumed.with(Serdes.String(), jsonSerde)); stream.selectKey(new KeyValueMapper<String, Message, String>() { @Override public String apply(String key, Message value) { return value.getOrgCode() ; } }) .groupByKey(Grouped.with(Serdes.String(), jsonSerde)) .count() .toStream().print(Printed.toSysOut()); return stream; }执行结果:

聚合
@Bean public KStream<String, Message> kStream6(StreamsBuilder streamsBuilder) { JsonSerde<Message> jsonSerde = new JsonSerde<>() ; JsonDeserializer<Message> descri = (JsonDeserializer<Message>) jsonSerde.deserializer() ; descri.addTrustedPackages("*") ; KStream<String, Message> stream = streamsBuilder.stream("test", Consumed.with(Serdes.String(), jsonSerde)); stream.selectKey(new KeyValueMapper<String, Message, String>() { @Override public String apply(String key, Message value) { return value.getOrgCode() ; } }) .groupByKey(Grouped.with(Serdes.String(), jsonSerde)) .aggregate(() -> 0L, (key, value ,aggValue) -> { System.out.println("key = " + key + ", value = " + value + ", agg = " + aggValue) ; return aggValue + 1 ; }, Materialized.<String, Long, KeyValueStore<Bytes,byte[]>>as("kvs").withValueSerde(Serdes.Long())) .toStream().print(Printed.toSysOut()); return stream; }执行结果:

Filter过滤数据
@Bean public KStream<String, Message> kStream7(StreamsBuilder streamsBuilder) { JsonSerde<Message> jsonSerde = new JsonSerde<>() ; JsonDeserializer<Message> descri = (JsonDeserializer<Message>) jsonSerde.deserializer() ; descri.addTrustedPackages("*") ; KStream<String, Message> stream = streamsBuilder.stream("test", Consumed.with(Serdes.String(), jsonSerde)); stream.selectKey(new KeyValueMapper<String, Message, String>() { @Override public String apply(String key, Message value) { return value.getOrgCode() ; } }) .groupByKey(Grouped.with(Serdes.String(), jsonSerde)) .aggregate(() -> 0L, (key, value ,aggValue) -> { System.out.println("key = " + key + ", value = " + value + ", agg = " + aggValue) ; return aggValue + 1 ; }, Materialized.<String, Long, KeyValueStore<Bytes,byte[]>>as("kvs").withValueSerde(Serdes.Long())) .toStream() .filter((key, value) -> !"2".equals(key)) .print(Printed.toSysOut()); return stream; }执行结果:

过滤Key不等于"2"
分支多流处理
@Bean public KStream<String, Message> kStream8(StreamsBuilder streamsBuilder) { JsonSerde<Message> jsonSerde = new JsonSerde<>() ; JsonDeserializer<Message> descri = (JsonDeserializer<Message>) jsonSerde.deserializer() ; descri.addTrustedPackages("*") ; KStream<String, Message> stream = streamsBuilder.stream("test", Consumed.with(Serdes.String(), jsonSerde)); // 分支,多流处理 KStream<String, Message>[] arrStream = stream.branch( (key, value) -> "男".equals(value.getSex()), (key, value) -> "女".equals(value.getSex())); Stream.of(arrStream).forEach(as -> { as.foreach((key, message) -> { System.out.println(Thread.currentThread().getName() + ", key = " + key + ", message = " + message) ; }); }); return stream; }执行结果:

多字段分组
不能使用多个selectKey,后面的会覆盖前面的
@Bean public KStream<String, Message> kStreamM2(StreamsBuilder streamsBuilder) { JsonSerde<Message> jsonSerde = new JsonSerde<>() ; JsonDeserializer<Message> descri = (JsonDeserializer<Message>) jsonSerde.deserializer() ; descri.addTrustedPackages("*") ; KStream<String, Message> stream = streamsBuilder.stream("test", Consumed.with(Serdes.String(), jsonSerde)); stream .selectKey(new KeyValueMapper<String, Message, String>() { @Override public String apply(String key, Message value) { System.out.println(Thread.currentThread().getName()) ; return value.getTime() + " | " + value.getOrgCode() ; } }) .groupByKey(Grouped.with(Serdes.String(), jsonSerde)) .count() .toStream().print(Printed.toSysOut()); return stream; }执行结果:
