60行Python代码轻松搞定数据库查询 1秒找到需要的数据

1 简介

学习Dash中渲染网页静态表格的代定数到需的数常用方法,并在最后的码轻秒找例子中教大家如何配合Dash,简简单单编写一个数据库查询应用~ 还特意在文末藏了惊喜哦!松搞

2 在Dash中渲染静态表格

在Dash中渲染「静态」表格,据库据方法有很多,查询而我们今天要学习的代定数到需的数方法,是码轻秒找配合之前文章介绍过的第三方拓展dash_bootstrap_components中的Table()部件,借助bootstrap的松搞特性来快速创建美观的「静态」表格:

2.1 静态表格的构成

要学习如何基于Dash在前端中渲染出一张静态表格,首先我们需要学习其元素构成,据库据Dash延续html中table标签相关概念,查询由Table()、代定数到需的数Thead()、码轻秒找Tbody()、松搞Tr()、据库据Th()以及Td()等6个部件来构成一张完整的查询表,先从一个简单的例子出发:

❝app1.py❞ 

import dash import dash_html_components as html import dash_bootstrap_components as dbc app = dash.Dash(__name__) app.layout = html.Div(     dbc.Container(         dbc.Table(             [                 html.Thead(                     html.Tr(                         [                             html.Th(第一列),                             html.Th(第二列),                         ]                     )                 ),                 html.Tbody(                     [                         html.Tr(                             [                                 html.Td(一行一列),                                 html.Td(一行二列),                             ]                         ),                         html.Tr(                             [                                 html.Td(二行一列),                                 html.Td(二行二列),                             ]                         )                     ]                 )             ]         ),         style={              margin-top: 50px # 设置顶部留白区域高度         }     ) ) if __name__ == __main__:     app.run_server(debug=True) 

 

注意,我们这里使用到的Table()部件来自dash_bootstrap_components,而表格其余的构成部件均来自Dash原生的站群服务器dash_html_components库,这些部件分别的作用如下:

「Table()」

Table()是一张静态表格最外层的部件,而之所以选择dash_bootstrap_components中的Table(),是因为其自带了诸多实用参数,常用的如下:

「bordered」:bool型,用于设置是否「保留」表格外边框线 「borderless」:bool型,用于设置是否「删除」表格内部单元格框线 「striped」:bool型,用于设置是否对数值行应用「斑马着色」方案,即相邻行背景色不同 「dark」:bool型,用于设置是否应用「暗黑」主题 「hover」:bool型,当设置为True时,鼠标悬浮于某行会有对应的效果

通过上述参数,我们就可以改变静态表格的整体效果,譬如设置dark=True之后的app1.py效果如下:

「Thead()与Tbody()」

在部件Table()之下一级需要子元素Thead()与Tbody(),分别用于存放表头信息以及表数值内容信息。

「Tr()、Th()与Td()」

经过前面Table()嵌套Thead()与Tbody()的过程之后,我们就可以分别开始在「表头区域」和「数值区域」正式组织数据内容。

既然是香港云服务器一张表格,那么还是要按照先行后列的网格方式组织内容。而Tr()部件的作用就是作为行容器,其内部嵌套的子元素则是表格中每个单元格位置上的元素。

其中在Thead()嵌套的Tr()内部,需要使用Th()来设置每列的字段名称,而在Tbody()嵌套的Tr()内部,Td()与Th()都可以用来设置每个单元格的数值内容,只不过Th()在表现单元格数值时有加粗效果:

❝app2.py❞ 

import dash import dash_html_components as html import dash_bootstrap_components as dbc app = dash.Dash(__name__) app.layout = html.Div(     dbc.Container(         dbc.Table(             [                 html.Thead(                     html.Tr(                         [                             html.Th(字段1),                             html.Th(字段2)                         ]                     )                 ),                 html.Tbody(                     [                         html.Tr(                             [                                 html.Th(1),                                 html.Td(test)                             ]                         ),                         html.Tr(                             [                                 html.Th(2),                                 html.Td(test)                             ]                         ),                         html.Tr(                             [                                 html.Td(3),                                 html.Td(test)                             ]                         )                     ]                 )             ],             striped=True         ),         style={              margin-top: 50px  # 设置顶部留白区域高度         }     ) ) if __name__ == __main__:     app.run_server(debug=True) 

 

而Th()与Td()均有额外参数colSpan与rowSpan,可以传入整数,来实现横向或纵向「合并单元格」的效果,譬如下面的例子:

❝app3.py❞ 

import dash import dash_html_components as html import dash_bootstrap_components as dbc app = dash.Dash(__name__) app.layout = html.Div(     dbc.Container(         dbc.Table(             [                 html.Thead(                     html.Tr(                         [                             html.Th(字段1),                             html.Th(字段2),                             html.Th(字段3),                             html.Th(字段4),                         ]                     )                 ),                 html.Tbody(                     [                         html.Tr(                             [                                 html.Th(1),                                 # style设置水平居中                                 html.Td(colSpan=2, colSpan=2, style={ text-align: center}),                                 html.Td(test),                             ]                         ),                         html.Tr(                             [                                 html.Th(2),                                 html.Td(test),                                 # style设置垂直居中                                 html.Td(rowSpan=2, rowSpan=2, style={ vertical-align: middle}),                                 html.Td(test)                             ]                         ),                         html.Tr(                             [                                 html.Th(3),                                 html.Td(test),                                 html.Td(test)                             ]                         )                     ]                 )             ],             striped=True,             bordered=True         ),         style={              margin-top: 50px  # 设置顶部留白区域高度         }     ) ) if __name__ == __main__:     app.run_server(debug=True) 

 

2.2 快速表格渲染

2.2.1 利用列表推导快速渲染静态表格

通过前面的内容,我们知晓了在Dash中如果渲染一张带有样式的静态表格,而日常需求中,面对批量的数据,我们当然不可能手动编写整张表对应的代码,服务器租用对于数量较多的表格,我们可以配合Python中常用的列表推导来实现。

比如下面的例子:

❝app4.py❞ 

import dash import dash_html_components as html import dash_bootstrap_components as dbc import pandas as pd import numpy as np fake_df = pd.DataFrame(np.random.rand(1000).reshape(200, 5)) fake_df.rename(lambda s: f字段{ s}, axis=1, inplace=True) # 批量格式化列名 app = dash.Dash(__name__) app.layout = html.Div(     dbc.Container(         dbc.Table(             [                 html.Thead(                     html.Tr(                         [html.Th(行下标, style={ text-align: center})] +                         [                             html.Th(column, style={ text-align: center})                             for column in fake_df.columns                         ]                     )                 ),                 html.Tbody(                     [                         html.Tr(                             [html.Th(f#{ idx}, style={ text-align: center})] +                             [                                html.Td(row[column], style={ text-align: center})                                 for column in fake_df.columns                             ]                         )                         for idx, row in fake_df.iterrows()                     ]                 )             ],             striped=True,             bordered=True         ),         style={              margin-top: 50px  # 设置顶部留白区域高度         }     ) ) if __name__ == __main__:     app.run_server(debug=True) 

在生成表头和每行内容时应用列表推导,使得我们的代码更加简洁。

2.2.2 利用from_dataframe()快速渲染表格

上述的列表推导方式虽说已经简洁了很多,但dash_bootstrap_components还提供了Table.from_dataframe()方法,可以直接传入pandas数据框来快速制作简易的静态表格。

它的样式相关参数与dbc.Table()一致,缺点是自定义表格内部元素样式的自由度没有前面列表推导高:

❝app5.py❞ 

import dash import dash_html_components as html import dash_bootstrap_components as dbc import pandas as pd import numpy as np fake_df = pd.DataFrame(np.random.rand(1000).reshape(200, 5)) fake_df.rename(lambda s: f字段{ s}, axis=1, inplace=True) # 批量格式化列名 app = dash.Dash(__name__) app.layout = html.Div(     dbc.Container(         # 一行代码渲染静态表格         dbc.Table.from_dataframe(fake_df, striped=True),         style={              margin-top: 50px  # 设置顶部留白区域高度         }     ) ) if __name__ == __main__:     app.run_server(debug=True) 

 

3 自制简易的数据库查询系统

在学习了今天的内容之后,我们就可以创建很多以表格为主体内容的web应用,典型如数据库查询系统,我们以Postgresql为例,配合pandas与sqlalchemy的相关功能,来快速打造一个简单的数据库查询系统。

首先将本期附件中的所有数据表利用下面的代码导入目标数据库中:

 

接着只需要配合Dash,短短的几十行代码就可以实现。

对应代码如下:

❝app6.py❞ 

import dash import dash_html_components as html import dash_bootstrap_components as dbc import dash_core_components as dcc from dash.dependencies import Input, Output, State import pandas as pd from sqlalchemy import create_engine postgres_url = postgresql://postgres:填入你的密码@localhost:5432/Dash engine = create_engine(postgres_url) app = dash.Dash(__name__) app.layout = html.Div(     dbc.Container(         [             dbc.Row(                 [                     dbc.Col(dbc.Button(更新数据库信息, id=refresh-db, style={ width: 100%}), width=2),                     dbc.Col(dcc.Dropdown(id=db-table-names, placeholder=选择库中数据表, style={ width: 100%}), width=4),                     dbc.Col(dbc.Button(查询, id=query, style={ width: 100%}), width=1)                 ]             ),             html.Hr(),             dbc.Row(                 [                     dbc.Col(                         id=query-result                     )                 ]             )         ],         style={              margin-top: 50px  # 设置顶部留白区域高度         }     ) ) @app.callback(     Output(db-table-names, options),     Input(refresh-db, n_clicks),     prevent_initial_call=True ) def query_data_records(n_clicks):         # 提取目标表格并查询其最多前500行记录         table_names = pd.read_sql_query("select tablename from pg_tables where schemaname=public", con=engine)         return [{ label: name, value: name} for name in table_names[tablename]] @app.callback(     Output(query-result, children),     Input(query, n_clicks),     State(db-table-names, value),     prevent_initial_call=True ) def refresh_table_names(n_clicks, value):     if value:         query_result = pd.read_sql_query(fselect * from { value} limit 500, con=engine)         return html.Div(dbc.Table.from_dataframe(query_result, striped=True), style={ height: 600px, overflow: auto})     else:         return dash.no_update if __name__ == __main__:     app.run_server(debug=True) 

以上就是本文的全部内容,欢迎在评论区与我进行讨论。

应用开发
上一篇:小白注册网站域名该怎么办?有什么步骤?
下一篇:cm域名有什么独特之处?新人要了解cm域名哪些?