中文新闻情感分类 Bert-Pytorch-transformers

  中文新闻情感分类 Bert-Pytorch-transformers

  使用pytorch框架以及transformers包,中文以及Bert的新闻中文预训练模型

中文新闻情感分类 Bert-Pytorch-transformers

  文件目录

中文新闻情感分类 Bert-Pytorch-transformers

  data

中文新闻情感分类 Bert-Pytorch-transformers

  Train_DataSet.csv

  Train_DataSet_Label.csv

  main.py

  NewsData.py

  #main.py

  from transformers import BertTokenizer

  from transformers import BertForSequenceClassification

  from transformers import BertConfig

  from transformers import BertPreTrainedModel

  import torch

  import torch.nn as nn

  from transformers import BertModel

  import time

  import argparse

  from NewsData import NewsData

  import os

  def get_train_args():

  parser=argparse.ArgumentParser()

  parser.add_argument(--batch_size,type=int,default=10,help = 每批数据的数量)

  parser.add_argument(--nepoch,type=int,default=3,help = 训练的轮次)

  parser.add_argument(--lr,type=float,default=0.001,help = 学习率)

  parser.add_argument(--gpu,type=bool,default=True,help = 是否使用gpu)

  parser.add_argument(--num_workers,type=int,default=2,help=dataloader使用的云南idc服务商线程数量)

  parser.add_argument(--num_labels,type=int,default=3,help=分类类数)

  parser.add_argument(--data_path,type=str,default=./data,help=数据路径)

  opt=parser.parse_args()

  print(opt)

  return opt

  def get_model(opt):

  #类方法.from_pretrained()获取预训练模型,num_labels是分类的类数

  model = BertForSequenceClassification.from_pretrained(bert-base-chinese,num_labels=opt.num_labels)

  return model

  def get_data(opt):

  #NewsData继承于pytorch的Dataset类

  trainset = NewsData(opt.data_path,is_train = 1)

  trainloader=torch.utils.data.DataLoader(trainset,batch_size=opt.batch_size,shuffle=True,num_workers=opt.num_workers)

  testset = NewsData(opt.data_path,is_train = 0)

  testloader=torch.utils.data.DataLoader(testset,batch_size=opt.batch_size,shuffle=False,num_workers=opt.num_workers)

  return trainloader,testloader

  def train(epoch,model,trainloader,testloader,optimizer,opt):

  print(\ntrain-Epoch: %d % (epoch+1))

  model.train()

  start_time = time.time()

  print_step = int(len(trainloader)/10)

  for batch_idx,(sue,label,posi) in enumerate(trainloader):

  if opt.gpu:

  sue = sue.cuda()

  posi = posi.cuda()

  label = label.unsqueeze(1).cuda()

  optimizer.zero_grad()

  #输入参数为词列表、位置列表、站群服务器情感标签

  outputs = model(sue,分类 position_ids=posi,labels = label)

  loss, logits = outputs[0],outputs[1]

  loss.backward()

  optimizer.step()

  if batch_idx % print_step == 0:

  print("Epoch:%d [%d|%d] loss:%f" %(epoch+1,batch_idx,len(trainloader),loss.mean()))

  print("time:%.3f" % (time.time() - start_time))

  def test(epoch,model,trainloader,testloader,opt):

  print(\ntest-Epoch: %d % (epoch+1))

  model.eval()

  total=0

  correct=0

  with torch.no_grad():

  for batch_idx,(sue,label,posi) in enumerate(testloader):

  if opt.gpu:

  sue = sue.cuda()

  posi = posi.cuda()

  labels = label.unsqueeze(1).cuda()

  label = label.cuda()

  else:

  labels = label.unsqueeze(1)

  outputs = model(sue, labels=labels)

  loss, logits = outputs[:2]

  _,predicted=torch.max(logits.data,1)

  total+=sue.size(0)

  correct+=predicted.data.eq(label.data).cpu().sum()

  s = ("Acc:%.3f" %((1.0*correct.numpy())/total))

  print(s)

  if __name__==__main__:

  opt = get_train_args()

  model = get_model(opt)

  trainloader,testloader = get_data(opt)

  if opt.gpu:

  model.cuda()

  optimizer=torch.optim.SGD(model.parameters(),lr=opt.lr,momentum=0.9)

  if not os.path.exists(./model.pth):

  for epoch in range(opt.nepoch):

  train(epoch,model,trainloader,testloader,optimizer,opt)

  test(epoch,model,trainloader,testloader,opt)

  torch.save(model.state_dict(),./model.pth)

  else: 郑州治疗妇科哪个医院好 http://www.120kdfk.com/

  model.load_state_dict(torch.load(model.pth))

  print(模型存在,直接test)

  test(0,model,trainloader,testloader,opt)

  #NewsData.py

  from transformers import BertTokenizer

  from transformers import BertForSequenceClassification

  from transformers import BertConfig

  from transformers import BertPreTrainedModel

  import torch

  import torch.nn as nn

  from transformers import BertModel

  import time

  import argparse

  class NewsData(torch.utils.data.Dataset):

  def __init__(self,root,is_train = 1):

  self.tokenizer = BertTokenizer.from_pretrained(bert-base-chinese)

  self.data_num = 7346

  self.x_list = []

  self.y_list = []

  self.posi = []

  with open(root + /Train_DataSet.csv,encoding=UTF-8) as f:

  for i in range(self.data_num+1):

  line = f.readline()[:-1] + 这是一个中性的数据

  data_one_str = line.split(,)[len(line.split(,))-2]

  data_two_str = line.split(,)[len(line.split(,))-1]

  if len(data_one_str) < 6:

  z = len(data_one_str)

  data_one_str = data_one_str + , + data_two_str[0:min(200,中文len(data_two_str))]

  else:

  data_one_str = data_one_str

  if i==0:

  continue

  word_l = self.tokenizer.encode(data_one_str, add_special_tokens=False)

  if len(word_l)<100:

  while(len(word_l)!=100):

  word_l.append(0)

  else:

  word_l = word_l[0:100]

  word_l.append(102)

  l = word_l

  word_l = [101]

  word_l.extend(l)

  self.x_list.append(torch.tensor(word_l))

  self.posi.append(torch.tensor([i for i in range(102)]))

  with open(root + /Train_DataSet_Label.csv,encoding=UTF-8) as f:

  for i in range(self.data_num+1):

  #print(i)

  label_one = f.readline()[-2]

  if i==0:

  continue

  label_one = int(label_one)

  self.y_list.append(torch.tensor(label_one))

  #训练集或者是测试集

  if is_train == 1:

  self.x_list = self.x_list[0:6000]

  self.y_list = self.y_list[0:6000]

  self.posi = self.posi[0:6000]

  else:

  self.x_list = self.x_list[6000:]

  self.y_list = self.y_list[6000:]

  self.posi = self.posi[6000:]

  self.len = len(self.x_list)

  def __getitem__(self, index):

  return self.x_list[index], self.y_list[index],self.posi[index]

  def __len__(self):

  return self.len

亿华云
系统运维
上一篇:4、说起来容易
下一篇:互联网中的地址是数字的IP地址,域名解析的作用主要就是为了便于记忆。