训练模型的保存与加载

  1.目的训练:

  将训练好的模型保存下来,云服务器提供商已备下次使用,模型节省训练时间,服务器托管存加提高效率

训练模型的保存与加载

  2.API:

训练模型的保存与加载

  from sklearn.externals import joblib

训练模型的保存与加载

  保存:

  joblib.dump(rf,训练"test.pkl")

  加载:

  estimator = joblib.load("test.pkl")

  3.Python代码实现:

  # -*- coding: UTF-8 -*-

  @Author :Jason

  波士顿房价预测,将模型保存到

  from sklearn.datasets import load_boston

  from sklearn.model_selection import train_test_split

  from sklearn.preprocessing import StandardScaler

  from sklearn.linear_model import Ridge

  from sklearn.metrics import mean_squared_error

  from sklearn.externals import joblib

  def model_save_fetch():

  """

  岭回归对波士顿房价进行预测

  :return:

  """

  # 1)获取数据

  boston = load_boston()

  print("特征数量:\n",模型 boston.data.shape)

  # 2)划分数据集 郑州妇科医院哪家好 http://fk.zyfuke.com/

  x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=22)

  # 3)标准化

  transfer = StandardScaler()

  x_train = transfer.fit_transform(x_train)

  x_test = transfer.transform(x_test)

  # # 4)预估器

  # estimator = Ridge(alpha=0.5, max_iter=10000)

  # estimator.fit(x_train, y_train)

  #

  # # 保存模型

  # joblib.dump(estimator, "./files/test.pkl")

  # 加载模型

  estimator = joblib.load("./files/test.pkl")

  # 5)得出模型

  print("岭回归-权重系数为:\n", estimator.coef_)

  print("岭回归-偏置为:\n", estimator.intercept_)

  # 6)模型评估

  y_predict = estimator.predict(x_test)

  print("预测房价:\n", y_predict)

  error = mean_squared_error(y_test, y_predict)

  print("岭回归-均方误差为:\n", error)

  return None

  if __name__ == "__main__":

  model_save_fetch()

网站模板
IT科技
上一篇:5、企业注册国内域名需要证件,其它情况一律不需要证件。
下一篇:3、不明先知,根据相关征兆预测可能发生的事件,以便提前做好准备,赶紧注册相关域名。;不差钱域名;buchaqian抢先注册,就是这种敏感类型。预言是最敏感的状态。其次,你应该有眼力。所谓眼力,就是善于从社会上时不时出现的各种热点事件中获取与事件相关的域名资源。眼力的前提是对域名领域的熟悉和丰富的知识。