Nacos之随机权重负载均衡算法
引言
Nacos在Client选择节点时提供了一种基于权重的随机算法随机算法,通过源码分析掌握其实现原理,权重方便实战中加以运用。负载
一、均衡内容提要
下面以图示的随机算法方式贯穿下随机权重负载均衡算法的流程:
节点列表
假设注册了5个节点,每个节点的权重权重如下。
组织递增数组
目的负载在于形成weights数组,该数组元素取值[0~1]范围,均衡元素逐个递增,随机算法计算过程如下图示。权重另外注意非健康节点或者权重小于等于0的负载不会被选择。
随机算法
通过生成[0~1]范围的高防服务器均衡随机数,通过二分法查找递增数组weights[]接近的随机算法index,再从注册节点列表中返回节点。权重
二、负载源码分析
随机权重负载均衡算法是在NacosNamingService#selectOneHealthyInstance提供,一起走查下。
@Override public Instance selectOneHealthyInstance(String serviceName, String groupName, boolean subscribe) throws NacosException { return selectOneHealthyInstance(serviceName, groupName, new ArrayList<String>(), subscribe); } @Override public Instance selectOneHealthyInstance(String serviceName, String groupName, List<String> clusters, boolean subscribe) throws NacosException { String clusterString = StringUtils.join(clusters, ","); // 注解@1 if (subscribe) { ServiceInfo serviceInfo = serviceInfoHolder.getServiceInfo(serviceName, groupName, clusterString); if (null == serviceInfo) { serviceInfo = clientProxy.subscribe(serviceName, groupName, clusterString); } return Balancer.RandomByWeight.selectHost(serviceInfo); } else { // 注解@2 ServiceInfo serviceInfo = clientProxy .queryInstancesOfService(serviceName, groupName, clusterString, 0, false); return Balancer.RandomByWeight.selectHost(serviceInfo); } }注解@1 已订阅「从缓存获取注册节点列表」,默认subscribe为true。
注解@2 从 「从服务器获取注册节点列表」
protected static Instance getHostByRandomWeight(List<Instance> hosts) { NAMING_LOGGER.debug("entry randomWithWeight"); if (hosts == null || hosts.size() == 0) { NAMING_LOGGER.debug("hosts == null || hosts.size() == 0"); return null; } NAMING_LOGGER.debug("new Chooser"); List<Pair<Instance>> hostsWithWeight = new ArrayList<Pair<Instance>>(); for (Instance host : hosts) { if (host.isHealthy()) { // 注解@3 hostsWithWeight.add(new Pair<Instance>(host, host.getWeight())); } } NAMING_LOGGER.debug("for (Host host : hosts)"); Chooser<String, Instance> vipChooser = new Chooser<String, Instance>("www.taobao.com"); // 注解@4 vipChooser.refresh(hostsWithWeight); NAMING_LOGGER.debug("vipChooser.refresh"); // 注解@5 return vipChooser.randomWithWeight(); }注解@3 非健康节点不会被选中,组装Pair的列表,包含健康节点的权重和Host信息
注解@4 刷新需要的数据,具体包括三部分:所有健康节点权重求和、服务器托管计算每个健康节点权重占比、组织递增数组。
public void refresh() { Double originWeightSum = (double) 0; // 注解@4.1 for (Pair<T> item : itemsWithWeight) { double weight = item.weight(); // ignore item which weight is zero.see test_randomWithWeight_weight0 in ChooserTest // weight小于等于 0的将会剔除 if (weight <= 0) { continue; } items.add(item.item()); // 值如果无穷大 if (Double.isInfinite(weight)) { weight = 10000.0D; } // 值如果为非数字值 if (Double.isNaN(weight)) { weight = 1.0D; } // 累加权重总和 originWeightSum += weight; } // 注解@4.2 double[] exactWeights = new double[items.size()]; int index = 0; for (Pair<T> item : itemsWithWeight) { double singleWeight = item.weight(); //ignore item which weight is zero.see test_randomWithWeight_weight0 in ChooserTest if (singleWeight <= 0) { continue; } // 每个节点权重的占比 exactWeights[index++] = singleWeight / originWeightSum; } // 注解@4.3 weights = new double[items.size()]; double randomRange = 0D; for (int i = 0; i < index; i++) { weights[i] = randomRange + exactWeights[i]; randomRange += exactWeights[i]; } double doublePrecisionDelta = 0.0001; if (index == 0 || (Math.abs(weights[index - 1] - 1) < doublePrecisionDelta)) { return; } throw new IllegalStateException( "Cumulative Weight caculate wrong , the sum of probabilities does not equals 1."); }注解@4.1 所有健康节点权重求和originWeightSum
注解@4.2 计算每个健康节点权重占比exactWeights数组
注解@4.3 组织递增数组weights,每个元素值为数组前面元素之和
以一个例子来表示这个过程,假设有5个节点:
1.2.3.4 100 1.2.3.5 100 1.2.3.6 100 1.2.3.7 80 1.2.3.8 60步骤一 计算节点权重求和
originWeightSum = 100 + 100 + 100 + 80 + 60 = 440步骤二 计算每个节点权重占比
exactWeights[0] = 0.2272 exactWeights[1] = 0.2272 exactWeights[2] = 0.2272 exactWeights[3] = 0.1818 exactWeights[4] = 0.1363步骤三 组织递增数组weights
weights[0] = 0.2272 weights[1] = 0.4544 weights[2] = 0.6816 weights[3] = 0.8634 weights[4] = 1注解@5 随机选取一个,逻辑如下:
public T randomWithWeight() { Ref<T> ref = this.ref; // 注解@5.1 double random = ThreadLocalRandom.current().nextDouble(0, 1); // 注解@5.2 int index = Arrays.binarySearch(ref.weights, random); // 注解@5.3 if (index < 0) { index = -index - 1; } else { // 注解@5.4 return ref.items.get(index); } // 返回选中的元素 if (index >= 0 && index < ref.weights.length) { if (random < ref.weights[index]) { return ref.items.get(index); } } /* This should never happen, but it ensures we will return a correct * object in case there is some floating point inequality problem * wrt the cumulative probabilities. */ return ref.items.get(ref.items.size() - 1); }注解@5.1 产生0到1区间的随机数
注解@5.2 二分法查找数组中接近的值
注解@5.3 没有命中返回插入数组理想索引值
注解@5.4 命中直接返回选中节点
小结: 一种基于权重的随机算法的实现过程,扒开看也不复杂。
本文转载自微信公众号「瓜农老梁」,可以通过以下二维码关注。转载本文请联系瓜农老梁公众号。云南idc服务商